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Abstract
It is well known that both gradient descent and
stochastic coordinate descent achieve a global
convergence rate of O(1/k) in the objective
value, when applied to a scheme for minimiz-
ing a Lipschitz-continuously differentiable, un-
constrained convex function. In this work, we
improve this rate to o(1/k). We extend the re-
sult to proximal gradient and proximal coordinate
descent on regularized problems to show similar
o(1/k) convergence rates. The result is tight in
the sense that a rate ofO(1/k1+ε) is not generally
attainable for any ε > 0, for any of these methods.

1. Introduction
Consider the unconstrained optimization problem

min
x

f(x), (1)

where f has domain in an inner-product space and is convex
and L-Lipschitz continuously differentiable for some L >
0. We assume throughout that the solution set Ω is non-
empty. (Elementary arguments based on the convexity and
continuity of f show that Ω is a closed convex set.) Classical
convergence theory for gradient descent on this problem
indicates a O(1/k) global convergence rate in the function
value. Specifically, if

xk+1 := xk − αk∇f(xk), k = 0, 1, 2, . . . , (2)

and αk ≡ ᾱ ∈ (0, 1/L], we have

f (xk)− f∗ ≤ dist(x0,Ω)2

2ᾱk
, k = 1, 2, . . . , (3)

where f∗ is the optimal objective value and dist(x,Ω) de-
notes the distance from x to the solution set. The proof of
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(3) relies on showing that

k(f (xk)− f∗) ≤
k∑

T=1

(f (xT )− f∗)

≤ 1

2ᾱ
dist(x0,Ω)2, k = 1, 2, . . . , (4)

where the first inequality utilizes the fact that gradient de-
scent is a descent method (yielding a nonincreasing se-
quence of function values {f(xk}). We demonstrate in
this paper that the bound (3) is not tight, in the sense that
k(f(xk)− f∗)→ 0, and thus f(xk)− f∗ = o(1/k). This
result is a consequence of the following technical lemma.

Lemma 1. Let {∆k} be a nonnegative sequence satisfying
the following conditions:

1. {∆k} is monotonically decreasing;
2. {∆k} is summable, that is,

∑∞
k=0 ∆k <∞.

Then k∆k → 0, so that ∆k = o(1/k).

Our claim about the fixed-step gradient descent method fol-
lows immediately by setting ∆k = f(xk)− f∗ in Lemma 1.
We state the result formally as follows, and prove it at the
start of Section 2.

Theorem 2. Consider (1) with f convex and L-Lipschitz
continuously differentiable and nonempty solution set Ω. If
the step sizes satisfy αk ≡ ᾱ ∈ (0, 1/L] for all k, then
gradient descent (2) generates objective values f(xk) that
converge to f∗ at an asymptotic rate of o(1/k).

This result shows that the o(1/k) rate for gradient descent
with a fixed short step size is universal on convex problems,
without any additional requirements such as the bounded-
ness of Ω assumed in Bertsekas (2016, Proposition 1.3.3).
In the remainder of the paper, we show that this faster rate
holds for several other smooth optimization algorithms, in-
cluding gradient descent with fixed steps in the larger range
(0, 2/L), gradient descent with various line-search strate-
gies, and stochastic coordinate descent with arbitrary sam-
pling strategies. We then extend the result to algorithms for
regularized convex optimization problems, including proxi-
mal gradient and stochastic proximal coordinate descent.

Except for the cases of coordinate descent and proximal co-
ordinate descent which require a finite-dimensional space so
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that all the coordinates can be processed, our results apply
to any inner-product spaces. Assumptions such as bounded
solution set, bounded level set, or bounded distance to the
solution set, which are commonly assumed in the literature,
are all unnecessary. We can remove these assumptions be-
cause an implicit regularization property causes the iterates
to stay within a bounded area.

In our description, the Euclidean norm is used for simplic-
ity, but our results can be extended directly to any norms
induced by an inner product,1 provided that Lipschitz con-
tinuity of ∇f is defined with respect to the corresponding
norm and its dual norm.

Related Work. Our work was inspired by Peng et al.
(2018, Corollary 2) and Bertsekas (2016, Proposition 1.3.3),
which improve convergence for certain algorithms and prob-
lems on convex problems in a Euclidean space from O(1/k)
to o(1/k) when the level set is compact. Our paper develops
improved convergence rates of several algorithms on convex
problems without the assumption on the level set, with most
of our results applying to non-Euclidean Hilbert spaces. The
main proof techniques in this work are somewhat different
from those in the works cited here.

For an accelerated version of proximal gradient on convex
problems, it is proved in (Attouch & Peypouquet, 2016)
that the convergence rate can be improved from O(1/k2) to
o(1/k2). Accelerated proximal gradient is a more compli-
cated algorithm than the nonaccelerated versions we discuss,
and thus Attouch & Peypouquet (2016) require a more com-
plicated analysis that is quite different from ours.

Deng et al. (2017) have stated a version of Lemma 1 with
a proof different from the proof that we present in the sup-
plementary material, using it to show the convergence rate
of the quantity ‖xk − xk+1‖ of a version of the alternating-
directions method of multipliers (ADMM). Our work differs
in the range of algorithms considered and the nature of the
convergence. We also provide a discussion of the tightness
of the o(1/k) convergence rate.

2. Main Results on Unconstrained Smooth
Problems

We start by detailing the procedure for obtaining (4), to
complete the proof of Theorem 2. First, we define

M(α) := α− 1
2Lα

2. (5)

1We meant that given an inner product < ·, · >, the norm ‖ · ‖
is defined as ‖x‖ :=

√
< x, x >.

From the Lipschitz continuity of∇f , we have for any point
x and any real number α that

f(x− α∇f(x))

≤ f(x)−∇f(x)> (α∇f(x)) +
L

2
‖α∇f(x)‖2

= f(x)−M(α)‖∇f(x)‖2. (6)

Clearly,

α ∈ (0, 1/L] ⇒ M(α) ≥ 1
2α > 0, (7)

so in this case, we have by rearranging (6) that

‖∇f(x)‖2 ≤ 2

α
(f(x)− f(x− α∇f(x))) . (8)

Considering any solution x̄ ∈ Ω and any T ≥ 0, we have
for gradient descent (2) that

‖xT+1 − x̄‖2 = ‖xT − αT∇f(xT )− x̄‖2

= ‖xT − x̄‖2 + α2
T ‖∇f(xT )‖2

− 2αT∇f(xT )> (xT − x̄) . (9)

Since αT ∈ (0, 1/L] in (9), from (8) and the convexity of f
(implying∇f(xT )T (x̄− xT ) ≤ f∗ − f(xT )), we have

‖xT+1 − x̄‖2 ≤ ‖xT − x̄‖2 + 2αT (f (xT )− f (xT+1))

+ 2αT (f∗ − f (xT )) . (10)

By rearranging (10) and using αT ≡ ᾱ ∈ (0, 1/L],

f (xT+1)− f∗ ≤ 1

2ᾱ

(
‖xT − x̄‖2 − ‖xT+1 − x̄‖2

)
.

(11)

We then obtain (4) by summing (11) from T = 0 to T =
k − 1 and noticing that x̄ is arbitrary in Ω.

Theorem 2 applies to step sizes in the range (0, 1/L] only,
but it is known that gradient descent converges at the
rate of O(1/k) for both the fixed step size scheme with
ᾱ ∈ (0, 2/L) and line-search schemes. Next, we show that
o(1/k) rates hold for these variants too. We then extend
the result to stochastic coordinate descent with arbitrary
sampling of coordinates.

2.1. Gradient Descent with Longer Steps

In this subsection, we allow the steplengths αk for (2) to
vary from iteration to iteration, according to the following
conditions, for some γ ∈ (0, 1]:

αk ∈ [C2, C1], C2 ∈
(

0,
2− γ
L

]
, C1 ≥ C2, (12a)

f (xk+1) ≤ f (xk)− γαk
2
‖∇f(xk)‖2. (12b)
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Note that these conditions encompass a fixed-steplength
strategy with αk ≡ C2 as a special case, by settingC1 = C2,
and noting that condition (12b) is a consequence of (6).
(Note too that αk ≡ C2 ∈ (0, (2 − γ)/L] can be almost
twice as large as the bound 1/L considered above.)

The main result for this subsection is as follows.

Theorem 3. Consider (1) with f convex and L-Lipschitz
continuously differentiable and nonempty solution set Ω.
If the step sizes αk satisfy (12), then gradient descent (2)
generates objective values f(xk) converging to f∗ at an
asymptotic rate of o(1/k).

We give two alternative proofs of this result to provide dif-
ferent insights. The first proof is similar to the one we pre-
sented for Theorem 2 at the start of this section. The second
proof holds only for Euclidean spaces. This proof improves
the standard proof of Nesterov (2004, Section 2.1.5).

We start from the following lemma, which verifies that the
iterates remain in a bounded set and is used in both proofs.

Lemma 4. Consider algorithm (2) with any initial point x0,
and assume that f is convex and L-Lipschitz-continuously
differentiable for some L > 0. Then when the sequence of
steplengths αk is chosen to satisfy (12), all iterates xk lie in
a bounded set. In particular, for any x̄ ∈ Ω and any k ≥ 0,
we have that

‖xk+1 − x̄‖2 ≤ ‖x0 − x̄‖2 +
2C1

γ
(f (x0)− f (xk+1))

+ 2C2

k∑
T=0

(f∗ − f (xT )) (13)

≤ ‖x0 − x̄‖2 +
2C1

γ
(f (x0)− f∗) . (14)

Proof. By (12b) and the convexity of f , (9) further implies
that for any T ≥ 0,

‖xT+1 − x̄‖2 − ‖xT − x̄‖2 (15)

≤ 2αT
γ

(f (xT )− f (xT+1)) + 2αT (f∗ − f (xT )) .

We know that the first term is nonnegative from (12b), while
the second term is nonpositive from the optimality of f∗.
Therefore, (15) implies

‖xT+1 − x̄‖2 − ‖xT − x̄‖2 (16)

≤ 2C1

γ
(f (xT )− f (xT+1)) + 2C2 (f∗ − f (xT )) .

We then obtain (13) by summing (16) for T = 0, 1, . . . , k
and telescoping. By noting that f(xk) ≥ f∗ for all k, (14)
follows.

The first proof of Theorem 3 is as follows.

First Proof of Theorem 3. We again consider Lemma 1
with ∆k := f(xk)− f∗, which is always nonnegative from
the optimality of f∗. Monotonicity is clear from (12b), so
we just need to show summability. By rearranging (13) and
noting f(xk+1) ≥ f∗, we obtain

2C2

k∑
T=0

∆T ≤ ‖x0 − x̄‖2 − ‖xk+1 − x̄‖2 +
2C1

γ
∆0

≤ ‖x0 − x̄‖2 +
2C1

γ
∆0.

For the second proof of Theorem 3, we first outline the
analysis from Nesterov (2004, Section 2.1.5) and then show
how it can be modified to produce the desired o(1/k) rate.
Denote by x̄T the projection of xT onto Ω (which is well
defined because Ω is nonempty, closed, and convex). We
can utilize the convexity of f to obtain

∆T ≤ ∇f(xT )> (xT − x̄T ) ≤ ‖∇f(xT )‖dist (xT ,Ω) ,

so that
‖∇f(xT )‖ ≥ ∆T

dist(xT ,Ω)
. (17)

By subtracting f∗ from both sides of (12b) and using αk ≥
C2 and (17), we obtain

∆T+1 ≤ ∆T −
C2γ∆2

T

2dist (xT ,Ω)
2 .

By dividing both sides of this expression by ∆T∆T+1 and
using ∆T+1 ≤ ∆T , we obtain

1

∆T+1
≥ 1

∆T
+

C2γ∆T

2dist (xT ,Ω)
2

∆T+1

≥ 1

∆T
+

C2γ

2dist (xT ,Ω)
2 . (18)

By summing (18) over T = 0, 1, . . . , k − 1, we obtain

1

∆k
≥ 1

∆0
+
∑k−1

T=0

C2γ

2dist (xT ,Ω)
2

⇒ ∆k ≤
1∑k−1

T=0
C2γ

2dist(xT ,Ω)2

. (19)

A O(1/k) rate is obtained by noting from Lemma 4 that
dist(xT ,Ω) ≤ R0 for some R0 > 0 and all T , so that∑k−1

T=0

1

dist (xT ,Ω)
2 ≥

k

R2
0

. (20)

Our alternative proof uses the fact that (20) is a loose bound
for Euclidean spaces and that an improved result can be
obtained by working directly with (19). We first use the
Bolzano-Weierstrass theorem (a bounded and closed set is
sequentially compact in a Euclidean space) together with
Lemma 4, to show that the sequence {xk} approaches the
solution set Ω.
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Lemma 5. Assume the conditions in Lemma 4 and in addi-
tion that f has domain in a Euclidean space f : <n → <.
We have

lim
k→∞

dist (xk,Ω) = 0. (21)

Proof. The proof is similar to (Peng et al., 2018, Proposi-
tion 1). Assume for contradiction that (21) does not hold.
Then there are ε > 0 and an infinite increasing sequence
{ki}, i = 1, 2, . . . , such that

dist (xki ,Ω) ≥ ε, i = 1, 2, . . . . (22)

From Lemma 4 and that {xki} ⊂ <n, the sequence {xki}
lies in a compact set and therefore has an accumulation point
x∗. From (18), we have 1/∆ki+1 ≥ 1/∆ki + C2γ/(2ε

2),
so that 1/∆k ↑ ∞ and hence ∆k ↓ 0. By continuity of f ,
it follows that f(x∗) = f∗, so that x∗ ∈ Ω by definition,
contradicting (22).

We note that a result similar to Lemma 5 has been given in
(Burachik et al., 1995) using a more complicated argument
with more restricted choices of α.

Second Proof of Theorem 3, for Euclidean Spaces. We
start with (19) and show that

lim
k→∞

1
C2γ

2

∑k−1
T=0

1

dist(xT ,Ω)2

1
k

= 0,

or, equivalently,

lim
k→∞

k∑k−1
T=0

1

dist(xT ,Ω)2

= 0. (23)

From the arithmetic-mean / harmonic-mean inequality,2 we
have that

0 ≤ k∑k−1
T=0

1

dist(xT ,Ω)2

≤
∑k−1
T=0 dist(xT ,Ω)2

k
. (24)

Lemma 5 shows that dist(xT ,Ω) → 0, so by the Stolz-
Cesàro theorem (see, for example, (Mureşan, 2009)), the
right-hand side of (24) converges to 0. Therefore, from the
sandwich lemma, (23) holds.

2 For any real numbers a1, . . . , an > 0, their harmonic mean
does not exceed their arithmetic mean. Namely,

n∑n
i=1 a

−1
i

≤
∑n

i=1 ai

n
.

2.2. Coordinate Descent

We now extend Theorem 2 to the case of randomized co-
ordinate descent. Our results can extend immediately to
block-coordinate descent with fixed blocks. Our analysis
for coordinate descent requires Euclidean spaces so that
coordinate descent can go through all coordinates.

The standard short-step coordinate descent procedure re-
quires knowledge of coordinate-wise Lipschitz constants.
Denoting by ei the ith unit vector, we denote by Li ≥ 0 the
constants such that:

|∇if(x)−∇if(x+ hei)| ≤ Li |h| ,
for all x ∈ <n and all h ∈ <,

(25)

where ∇if(·) denotes the ith coordinate of the gradient.
Note that if ∇f(x) is L-Lipschitz continuous, there always
exist L1, . . . , Ln ∈ [0, L] such that (25) holds. Without loss
of generality, we assume Li > 0 for all i. Given parameters
{L̄i}ni=1 such that L̄i ≥ Li for all i, the coordinate descent
update is

xk+1 ← xk −
∇ikf (xk)

L̄ik
eik , (26)

where ik is the coordinate selected for updating at the kth
iteration. We consider the general case of stochastic coordi-
nate descent in which each ik is independently identically
distributed following a fixed prespecified probability distri-
bution p1, . . . , pn satisfying

pi ≥ pmin, i = 1, 2, . . . , n;

n∑
i=1

pi = 1, (27)

for some constant pmin > 0. Nesterov (2012) proves that
stochastic coordinate descent has a O(1/k) convergence
rate (in expectation of f ) on convex problems. We show
below that this rate can be improved to o(1/k).

Theorem 6. Consider (1) with f convex and nonempty so-
lution set Ω, and that (25) holds with some L1, . . . , Ln > 0.
If we apply coordinate descent (26) and at each iteration,
ik is independently picked at random following a probabil-
ity distribution satisfying (27), then the expected objective
Ei0,i1,...,ik−1

[f(xk)] converges to f∗ at an asymptotic rate
of o(1/k).

Proof. From (25) and that L̄i ≥ Li, by treating all other
coordinates as non-variables, we have that for any T ≥ 0,

f

(
xT −

∇if (xT )

L̄i
ei

)
− f (xT ) ≤ −‖∇if (xT )‖2

2L̄i
,∀i,

(28)
showing that the algorithm decreases f at each iteration.
Consider any x̄ ∈ Ω, by defining

r2
T :=

∑n

i=1

L̄i
pi
‖(xT − x̄)i‖

2
, (29)
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we have from (26) that

r2
T+1 = r2

T +
‖∇iT f (xT )‖2

L̄iT piT
−

2∇iT f (xT )
>

(xT − x̄)iT
piT

.

By taking expectation over iT on both sides of the above
expression, we obtain from the convexity of f and (28) that

1

2

(
EiT

[
r2
T+1

]
− r2

T

)
(28)
≤ 1

pmin

∑n

i=1
pi

(
f (xT )− f

(
xT −

∇if (xT )

L̄i
ei

))
−∇f (xT )

>
(xT − x̄)

≤ f (xT )− EiT [f (xT+1)]

pmin
+ (f∗ − f (xT )) . (30)

By taking expectation over i0, i1, . . . , iT−1 on (30) and sum-
ming (30) over T = 0, 1, . . . , k, we obtain

2
∑k

T=0

(
Ei0,...,iT−1

[f(xT )]− f∗
)

≤ r2
0 − Ei0,...,ik

[
r2
k+1

]
+

2 (f (x0)− Ei0,...,ik [f (xk+1)])

pmin

≤ r2
0 +

2 (f (x0)− f∗)
pmin

.

The result now follows from Lemma 1.

3. Regularized Problems
We turn to regularized optimization in an inner-product
space:

minx F (x) := f(x) + ψ(x), (31)

where both terms are convex, f is L-Lipschitz-continuously
differentiable, and ψ is extended-valued, proper, and closed,
but possibly nondifferentiable. We also assume that ψ is
such that the prox-operator can be applied easily, by solving
the following problem for any given y and any λ > 0:

minx ψ (x) +
1

2λ
‖x− y‖2.

We assume further that the solution set Ω of (31) is
nonempty, and denote by F ∗ the value of F for all x ∈ Ω.
We discuss two algorithms to show how our techniques can
be extended to regularized problems. They are proximal
gradient (both with and without line search) and stochastic
proximal coordinate descent with arbitrary sampling.

3.1. Short-Step Proximal Gradient

Given L̄ ≥ L, the kth step of the proximal gradient algo-
rithm is defined as follows:

xk+1 ← xk + dk,

dk := arg min
d
∇f(xk)>d+

L̄

2
‖d‖2 + ψ (xk + d) .

(32)

Note that dk is uniquely defined here, since the subproblem
is strongly convex. It is shown in (Beck & Teboulle, 2009;
Nesterov, 2013) that F (xk) converges to F ∗ at a rate of
O(1/k) for this algorithm, under our assumptions. We
prove that a o(1/k) rate can be attained.

Theorem 7. Consider (31) with f convex and L-Lipschitz
continuously differentiable, ψ convex, and nonempty solu-
tion set Ω. Given any L̄ ≥ L, the proximal gradient method
(32) generates iterates whose objective value converges to
F ∗ at a o(1/k) rate.

Proof. The method (32) can be shown to be a descent
method from the Lipschitz continuity of ∇f and the fact
that L̄ ≥ L. From the optimality of the solution to (32) and
that xk+1 = xk + dk,

−
(
∇f(xk) + L̄dk

)
∈ ∂ψ (xk+1) , (33)

where ∂ψ denotes the subdifferential of ψ. Consider any
x̄ ∈ Ω. We have from (32) that for any T ≥ 0, the following
chain of relationships holds:

‖xT+1 − x̄‖2 − ‖xT − x̄‖2

= 2d>T (xT − x̄) + ‖dT ‖2

= 2d>T (xT + dT − x̄)− ‖dT ‖2

= 2

(
dT +

∇f(xT )

L̄

)>
(xT+1 − x̄)

− 2

L̄
∇f(xT )> (xT + dT − x̄)− ‖dT ‖2

(33)
≤ 2

ψ (x̄)− ψ (xT+1)

L̄
− 2

L̄
∇f(xT )> (xT − x̄)

− 2

L̄
∇f(xT )>dT − ‖dT ‖2

≤ 2

L̄
(ψ (x̄)− ψ (xT+1)) +

2f (x̄)

L̄

− 2

L̄

(
f (xT ) +∇f(xT )>dT +

L̄‖dT ‖2

2

)

≤ 2 (F ∗ − F (xT+1))

L̄
, (34)

where in the last inequality, we have used

f(x+ d) ≤ f(x) +∇f(x)>d+
L

2
‖d‖2

≤ f(x) +∇f(x)>d+
L̄

2
‖d‖2. (35)

By rearranging (34), we obtain

F (xT+1)− F ∗ ≤ L̄

2

(
‖xT − x̄‖2 − ‖xT+1 − x̄‖2

)
.

The result follows by summing both sides of this expression
over T = 0, 1, . . . , k − 1 and applying Lemma 1.
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3.2. Proximal Gradient with Line Search

We discuss a line-search variant of proximal gradient, where
the update is defined as follows:

xk+1 ← xk + dk,

dk := arg mind ∇f(xk)>d+
‖d‖2

2αk
+ ψ (xk + d) ,

(36)

where αk is chosen such that for given γ ∈ (0, 1] and C1 ≥
C2 > 0 defined as in (12a), we have

αk ∈ [C2, C1], F (xk + dk) ≤ F (xk)− γ

2αk
‖dk‖2.

(37)
This framework is a generalization of that in Section 2.1,
and includes the SpaRSA algorithm of Wright et al. (2009),
which obtains an initial choice of αk from a Barzilai-
Borwein approach and adjusts it until (37) holds. The ap-
proach of the previous subsection can also be seen as a
special case of (36)-(37) through the following elementary
result, whose proof is omitted.
Lemma 8. Consider a convex function ψ, a positive scalar
a > 0 and two vectors b and x. If d is the unique solution
of the strictly convex problem

mind b
>d+

a

2
‖d‖2 + ψ(x+ d),

then

b>d+
a

2
‖d‖2 + ψ(x+ d)− ψ(x) ≤ −a

2
‖d‖2.

By setting b = ∇f(x), 1/αk ≡ a = L̄ > 0 (where L̄ ≥ L),
this lemma together with (35) implies that (37) holds for
any γ ∈ (0, 1]. Moreover, it also implies that for any k ≥ 0,

F (xk+1)− F (xk)

(35)
≤ ∇f (xk)

>
dk +

1

2αk
‖dk‖2 + ψ (xk + dk)− ψ (xk)

+

(
L

2
− 1

2αk

)
‖dk‖2

≤ −
(

1

αk
− L

2

)
‖dk‖2 .

Therefore, for any γ ∈ (0, 1], (37) holds whenever α > 0
and γ/(2αk) ≤ 1/αk −L/2, or equivalently αk ∈ (0, (2−
γ)/L], which is how the upper bound for C2 is set.

We show now that this approach also has a o(1/k) conver-
gence rate on convex problems.
Theorem 9. Consider (31) with f convex and L-Lipschitz
continuously differentiable, ψ convex, and nonempty solu-
tion set Ω. Given some γ ∈ (0, 1] and C2 and C1 such that
C1 ≥ C2 and C2 ∈ (0, (2− γ)/L], then the algorithm (36)
with αk satisfying (37) generates iterates {xk} whose ob-
jective values converge to F ∗ at a rate of o(1/k). Moreover,
the sequence of iterates is bounded.

Proof. From the optimality conditions of (36), we have

−
(
∇f(xT ) +

1

αT
dT

)
∈ ∂ψ (xT+1) . (38)

Now consider any x̄ ∈ Ω. We have from (36) that for any
T ≥ 0, the following chain of relationships holds:

‖xT+1 − x̄‖2 − ‖xT − x̄‖2

= 2d>T (xT + dT − x̄)− ‖dT ‖2

= 2 (dT + αT∇f(xT ))
>

(xT+1 − x̄)

− 2αT∇f(xT )> (xT + dT − x̄)− ‖dT ‖2

(38)
≤ 2αT (ψ (x̄)− ψ (xT+1))

− 2αT∇f(xT )> (xT − x̄)− 2αT∇f(xT )>dT

= 2αT (ψ (x̄)− ψ (xT+1))− 2αT∇f(xT )> (xT − x̄)

− 2αT∇f(xT )>dT + αTL‖dT ‖2 − αTL‖dT ‖2

≤ 2αT (ψ (x̄)− ψ (xT+1) + f (x̄))

− 2αT

((
f (xT ) +∇f(xT )>dT +

L

2
‖dT ‖2

))
+ αTL‖dT ‖2

(37)
≤ 2αT (F ∗ − F (xT+1)) +

2Lα2
T

γ
(F (xT )− F (xT+1))

≤ 2C2 (F ∗ − F (xT+1))

+
2LC2

1

γ
(F (xT )− F (xT+1)) . (39)

By rearrangement, of this inequality, we obtain

F (xT+1)− F ∗ ≤ LC2
1

γC2
(F (xT )− F (xT+1))

+
1

2C2

(
‖xT − x̄‖2 − ‖xT+1 − x̄‖2

)
,

and by summing both sides and using telescoping sums, we
find that

∑∞
T=0(F (xT+1)− F ∗) <∞, thus the conditions

of Lemma 1 are satisfied by ∆T := F (xT )− F ∗, and the
o(1/k) rate follows.

By summing the inequality above finitely over T =
0, 1, . . . , k − 1, we obtain

0 ≤
∑k−1

T=0
(F (xT+1)− F ∗)

≤ LC2
1

γC2
(F (x0)− F ∗) +

1

2C2

(
‖x0 − x̄‖2 − ‖xk − x̄‖2

)
.

By rearranging this inequality, we obtain a uniform upper
bound on ‖xk − x̄‖, thus showing that the sequence {xk}
is bounded.

3.3. Proximal Coordinate Descent

We discuss the extension of coordinate descent to (31), with
the assumption (25) on f , Euclidean domain of dimension
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n, sampling weighted according to (27) , and the additional
assumption of separability of the regularizer ψ, that is,

ψ(x) =
∑n

i=1
ψi(xi), (40)

where each ψi is convex, extended valued, and possibly
nondifferentiable. As in our discussion of Section 2.2, the
results in this subsection can be extended directly to the case
of block-coordinate descent.

Given the component-wise Lipschitz constants {Li}ni=1 and
algorithmic parameters {L̄i}ni=1 with L̄i ≥ Li for all i,
proximal coordinate descent updates have the form

xk+1 ← xk + dkikeik ,

dkik := arg min
d∈<
∇ikf(xk)d+

L̄ik
2
d2 + ψik ((xk)ik + d) .

(41)
With pi ≡ 1/n for all i, Lu & Xiao (2015) showed that the
expected objective value converges to F ∗ at a O(1/k) rate.
When arbitrary sampling (27) is considered, (41) is a special
case of the general algorithmic framework described in (Lee
& Wright, 2018). The latter paper shows the same O(1/k)
rate for convex problems under the additional assumption
that for any x0, we have

maxx:F (x)≤F (x0) dist (x,Ω) <∞. (42)

We show here that with arbitrary sampling according to (27),
(41) produces o(1/k) convergence rates for the expected
objective on convex problems, without the assumption (42).

The following result makes use of the quantity rk defined in
(29).

Theorem 10. Consider (31) with f and ψ convex and
nonempty solution set Ω. Assume further that (40) is true,
and that (25) holds with some L1, L2, . . . , Ln > 0. Given
{L̄i}ni=1 with L̄i ≥ Li for all i, suppose that proximal co-
ordinate descent defines iterates according to (41), with ik
chosen i.i.d. according to a probability distribution satisfy-
ing (27). Then Ei0,i1,...,ik−1

[F (xk)] converges to F ∗ at an
asymptotic rate of o(1/k). Moreover, given any x̄ ∈ Ω, the
sequence of Ei0,...,ik−1

r2
k is bounded.

Proof. From (25), we first notice that in the update (41),

F
(
xk + dkikeik

)
− F (xk)

≤ ∇ikf(xk)dkik +
L̄ik
2

(
dkik
)2

+ ψik
(
(xk)ik + dkik

)
− ψik

(
(xk)ik

)
.

(43)

From Lemma 8, the method defined by (41) is a descent
method. Optimality of the subproblem in (41) yields

−
(
∇iT f (xT ) + L̄iT d

T
iT

)
∈ ∂ψiT

(
(xT )iT + dTiT

)
. (44)

By taking any x̄ ∈ Ω, and using the definition (29), we
have:

r2
T+1 − r2

T

=
2L̄iT
piT

(
d>iT
)> (

xT + dTiT − x̄
)
iT
− L̄iT
piT

(
dTiT
)2

=
2

piT

(
∇iT f (xT ) + L̄iT d

T
iT

)> (
xT + dTiT − x̄

)
iT

− L̄iT
piT

(
dTiT
)2 − 2

piT
∇iT f (xT )

>
(xT − x̄)iT

− 2

piT
∇iT f (xT )

>
dTiT

(44)
≤ 2

piT

(
ψiT (x̄iT )− ψiT

(
(xT )iT

))
− 2

piT

(
ψiT

(
(xT )iT + dTiT

)
− ψiT

(
(xT )iT

))
− 2

piT
∇iT f (xT )

>
(xT − x̄)iT

− 2

piT

(
∇iT f (xT )

>
dTiT +

L̄iT
2

∥∥dTiT ∥∥2
)
. (45)

By taking expectation over iT on both sides of (45) and
using the convexity of f together with (43), we obtain

1

2

(
EiT

[
r2
T+1

]
− r2

T

)
≤ ψ (x̄)− ψ (xT ) + f (x̄)− f (xT )

+
(∑n

i=1
F (xT )− F

(
xT + dTi ei

))
≤ (F ∗ − F (xT )) (46a)

+
1

pmin

∑n

i=1
pi
(
F (xT )− F

(
xT + dTi ei

))
= (F ∗ − F (xT )) +

(F (xT )− EiT [F (xT+1)])

pmin
, (46b)

where in (46a) we used the fact that (41) is a descent method.
By taking expectation over i0, . . . , ik−1 on (46b), summing
over T = 0, . . . , k, and applying Lemma 1, we obtain the
desired convergence rate.

Boundedness of Ei0,...,ik−1
[r2
k] follows from the same tele-

scoping sum and the fact that F (xk) decreases monotoni-
cally with k.

Our result shows that, similar to gradient descent and proxi-
mal gradient, proximal coordinate descent and coordinate
descent also provide a form of implicit regularization in
that the expected value of rk is bounded. Since rk can
be viewed as a weighted Euclidean norm, this observation
implies that the iterates are also in a sense expected to lie
within a bounded region.

Our analysis here improves the rates in (Lu & Xiao, 2015;
Lee & Wright, 2018) in terms of the dependency on k and
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removes the assumption of (12a) in (Lee & Wright, 2018).
Even aside from the improvement from O(1/k) to o(1/k),
Theorem 10 is the first time that a convergence rate for prox-
imal stochastic coordinate descent with arbitrary sampling
for the coordinates is proven without additional assump-
tions such as (42). By manipulating (46b), one can also
observe how different probability distributions affect the up-
per bound, and it might also be possible to get better upper
bounds by using norms different from (29).

4. Tightness of the o(1/k) Estimate
We demonstrate that the o(1/k) estimate of convergence of
{f(xk)} is tight by showing that for any ε ∈ (0, 1], there is a
convex smooth function for which the sequence of function
values generated by gradient descent with a fixed step size
converges slower than O(1/k1+ε). The example problem
we provide is a simple one-dimensional function, so it serves
also as a special case of stochastic coordinate descent and
the proximal methods (where ψ ≡ 0) as well. Thus, this
example shows tightness of our analysis for all methods
without line search considered in this paper.

Consider the one-dimensional real convex function

f(x) = xp, (47)

where p is an even integer greater than 2. The minimizer of
this function is clearly at x∗ = 0, for which f(0) = f∗ = 0.
Suppose that the gradient descent method is applied starting
from x0 = 1. For any descent method, the iterates xk are
confined to [−1, 1] and we have

‖∇2f(x)‖ ≤ p(p− 1) for all x with |x| ≤ 1,

so we set L = p(p − 1). Suppose that ᾱ ∈ (0, 2/L) as
above. Then the iteration formula is

xk+1 = xk − ᾱ∇f(xk) = xk

(
1− pᾱxp−2

k

)
, (48)

and by Lemma 4, all iterates lie in a bounded set: the level
set [−1, 1] defined by x0. In fact, since p ≥ 4 and ᾱ ∈
(0, 2/L), we have that

xk ∈ (0, 1] ⇒ 1− pᾱxp−2
k ∈

(
1− 2p

p(p− 1)
xp−2
k , 1

)
⊆
(

1− 2

p− 1
, 1

)
⊆
(

2

3
, 1

)
,

so that xk+1 ∈
(

2
3xk, xk

)
and the value of L remains valid

for all iterates.

We show by an informal argument that there exists a con-
stant C such that

f(xk) ≈ C

kp/(p−2)
, for all k sufficiently large. (49)

From (48) we have

f(xk+1) = f(xk)
(

1− pᾱf(xk)(p−2)/p
)p
. (50)

By substituting the hypothesis (49) into (50), and taking k
to be large, we obtain the following sequence of equivalent
approximate equalities:

C

(k + 1)p/(p−2)
≈ C

kp/(p−2)

(
1− pᾱC

(p−2)/p

k

)p
⇔

(
k

k + 1

)p/(p−2)

≈
(

1− pᾱC
(p−2)/p

k

)p
⇔

(
1− 1

k + 1

)p/(p−2)

≈ 1− p2ᾱ
C(p−2)/p

k

⇔ 1− p

p− 2

1

k + 1
≈ 1− p2ᾱ

C(p−2)/p

k

This last expression is approximately satisfied for large k if
C satisfies the expression

p/(p− 2) = p2ᾱC(p−2)/p.

Stated another way, our result (49) indicates that a con-
vergence rate faster than O(1/k1+ε) is not possible when
steepest descent with fixed steplength is applied to the func-
tion f(x) = xp provided that p/(p − 2) ≤ 1 + ε, that
is,

p ≥ 2
1 + ε

ε
and p is a positive even integer.

We follow Attouch et al. (2018) to provide a continuous-
time analysis of the same objective function, using a gradient
flow argument. For the function f defined by (47), consider
the following differential equation:

x′(t) = −α∇f(x(t)). (51)

Suppose that
x(t) = t−θ (52)

for some θ > 0, which indicates that starting from any
t > 0, x(t) lies in a bounded area. Substituting (52) into
(51), we obtain

−θt−θ−1 = −αpt−θ(p−1),

which holds true if and only if the following equations are
satisfied: {

θ = αp,

−θ − 1 = −θp+ θ,

from which we obtain θ = (p − 2)−1, α = (p(p − 2))−1.
Since x decreases monotonically to zero, for all t ≥ (p −
1)/(p−2), L = p(p−1)((p−1)/(p−2))−θ(p−2) = p(p−2)
is an appropriate value for a bound on ‖∇2f(x)‖. These
values of α and L satisfy 0 < α ≤ 1

L , making α a valid step
size. The objective value is f(x(t)) = t−p/(p−2), matching
the rate of (49).
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A. Proof of Lemma 1
Proof. The proof uses simplified elements of the proofs of Lemmas 2 and 9 of Section 2.2.1 from (Polyak, 1987). Define
sk := k∆k and uk := sk +

∑∞
i=k ∆i. Note that

sk+1 = (k + 1)∆k+1 ≤ k∆k + ∆k+1 ≤ sk + ∆k. (1)

From (1) we have

uk+1 = sk+1 +
∞∑

i=k+1

∆i ≤ sk + ∆k +
∞∑

i=k+1

∆i

= sk +
∞∑
i=k

∆i = uk,

so that {uk} is a monotonically decreasing nonnegative sequence. Thus there is u ≥ 0 such that uk → u, and since
limk→∞

∑∞
i=k ∆i = 0, we have sk → u also.

Assuming for contradiction that u > 0, there exists k0 > 0 such that sk ≥ u/2 > 0 for all k ≥ k0, so that ∆k ≥ u/(2k)
for all k ≥ k0. This contradicts the summability of {∆k}. Therefore we have u = 0, so that k∆k = sk → 0, proving the
result.
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